Fourier et convolution

- Ce quizz comprend 10 questions
- durée 19'
- le chronométrage ne marche qu'en mode plein écran, à partir du transparent suivant

- (1) Expression des TF
 - Ecrire l'expression de $\hat{x}_a(f)$, la TF d'un signal $x_a(t)$ à temps continu appartenant à $L^1(\mathbb{R})$
 - Ecrire l'expression de $\hat{x}(v)$, la TF(td) pour un signal x(n) à temps discret appartenant à $l^1(\mathbb{Z})$
 - Ecrire l'expression de $X_N(k)$ la TFD d'ordre N d'une séquence finie $x(n), n = 0, 1, \dots, N-1$, de longueur N.

Vous avez 1 minute(s)

- (1) Expression des TF
 - Ecrire l'expression de $\hat{x}_a(f)$, la TF d'un signal $x_a(t)$ à temps continu appartenant à $L^1(\mathbb{R})$
 - Ecrire l'expression de $\hat{x}(v)$, la TF(td) pour un signal x(n) à temps discret appartenant à $l^1(\mathbb{Z})$
 - Ecrire l'expression de $X_N(k)$ la TFD d'ordre N d'une séquence finie $x(n), n = 0, 1, \dots, N-1$, de longueur N.

- (1) Expression des TF
 - Ecrire l'expression de $\hat{x}_a(f)$, la TF d'un signal $x_a(t)$ à temps continu appartenant à $L^1(\mathbb{R})$
 - Ecrire l'expression de $\hat{x}(v)$, la TF(td) pour un signal x(n) à temps discret appartenant à $l^1(\mathbb{Z})$
 - Ecrire l'expression de $X_N(k)$ la TFD d'ordre N d'une séquence finie $x(n), n = 0, 1, \dots, N-1$, de longueur N.

- (1) Expression des TF
 - Ecrire l'expression de $\hat{x}_a(f)$, la TF d'un signal $x_a(t)$ à temps continu appartenant à $L^1(\mathbb{R})$
 - Ecrire l'expression de $\hat{x}(v)$, la TF(td) pour un signal x(n) à temps discret appartenant à $l^1(\mathbb{Z})$
 - Ecrire l'expression de $X_N(k)$ la TFD d'ordre N d'une séquence finie $x(n), n = 0, 1, \dots, N-1$, de longueur N.

- (1) Expression des TF
 - Ecrire l'expression de $\hat{x}_a(f)$, la TF d'un signal $x_a(t)$ à temps continu appartenant à $L^1(\mathbb{R})$
 - Ecrire l'expression de $\hat{x}(v)$, la TF(td) pour un signal x(n) à temps discret appartenant à $l^1(\mathbb{Z})$
 - Ecrire l'expression de $X_N(k)$ la TFD d'ordre N d'une séquence finie $x(n), n = 0, 1, \dots, N-1$, de longueur N.

- (1) Expression des TF
 - Ecrire l'expression de $\hat{x}_a(f)$, la TF d'un signal $x_a(t)$ à temps continu appartenant à $L^1(\mathbb{R})$
 - Ecrire l'expression de $\hat{x}(v)$, la TF(td) pour un signal x(n) à temps discret appartenant à $l^1(\mathbb{Z})$
 - Ecrire l'expression de $X_N(k)$ la TFD d'ordre N d'une séquence finie $x(n), n = 0, 1, \dots, N-1$, de longueur N.

- (1) Expression des TF
 - Ecrire l'expression de $\hat{x}_a(f)$, la TF d'un signal $x_a(t)$ à temps continu appartenant à $L^1(\mathbb{R})$
 - Ecrire l'expression de $\hat{x}(v)$, la TF(td) pour un signal x(n) à temps discret appartenant à $l^1(\mathbb{Z})$
 - Ecrire l'expression de $X_N(k)$ la TFD d'ordre N d'une séquence finie $x(n), n = 0, 1, \dots, N-1$, de longueur N.

- (1) Expression des TF
 - Ecrire l'expression de $\hat{x}_a(f)$, la TF d'un signal $x_a(t)$ à temps continu appartenant à $L^1(\mathbb{R})$
 - Ecrire l'expression de $\hat{x}(v)$, la TF(td) pour un signal x(n) à temps discret appartenant à $l^1(\mathbb{Z})$
 - Ecrire l'expression de $X_N(k)$ la TFD d'ordre N d'une séquence finie $x(n), n = 0, 1, \dots, N-1$, de longueur N.

- (1) Expression des TF
 - Ecrire l'expression de $\hat{x}_a(f)$, la TF d'un signal $x_a(t)$ à temps continu appartenant à $L^1(\mathbb{R})$
 - Ecrire l'expression de $\hat{x}(v)$, la TF(td) pour un signal x(n) à temps discret appartenant à $l^1(\mathbb{Z})$
 - Ecrire l'expression de $X_N(k)$ la TFD d'ordre N d'une séquence finie $x(n), n = 0, 1, \dots, N-1$, de longueur N.

(1) Expression des TF

- Ecrire l'expression de $\hat{x}_a(f)$, la TF d'un signal $x_a(t)$ à temps continu appartenant à $L^1(\mathbb{R})$
- Ecrire l'expression de $\hat{x}(v)$, la TF(td) pour un signal x(n) à temps discret appartenant à $l^1(\mathbb{Z})$
- Ecrire l'expression de $X_N(k)$ la TFD d'ordre N d'une séquence finie $x(n), n = 0, 1, \dots, N-1$, de longueur N.

- (1) Expression des TF
 - Ecrire l'expression de $\hat{x}_a(f)$, la TF d'un signal $x_a(t)$ à temps continu appartenant à $L^1(\mathbb{R})$
 - Ecrire l'expression de $\hat{x}(v)$, la TF(td) pour un signal x(n) à temps discret appartenant à $l^1(\mathbb{Z})$
 - Ecrire l'expression de $X_N(k)$ la TFD d'ordre N d'une séquence finie $x(n), n = 0, 1, \dots, N-1$, de longueur N.

(1) Expression des TF

- Ecrire l'expression de $\hat{x}_a(f)$, la TF d'un signal $x_a(t)$ à temps continu appartenant à $L^1(\mathbb{R})$
- Ecrire l'expression de $\hat{x}(v)$, la TF(td) pour un signal x(n) à temps discret appartenant à $l^1(\mathbb{Z})$
- Ecrire l'expression de $X_N(k)$ la TFD d'ordre N d'une séquence finie $x(n), n = 0, 1, \dots, N-1$, de longueur N.

Vous avez 2 minute(s)

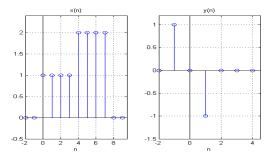


Figure: 2 séquences à convoler

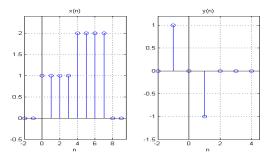


Figure: 2 séquences à convoler

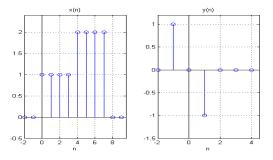


Figure: 2 séquences à convoler

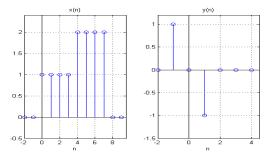


Figure: 2 séquences à convoler

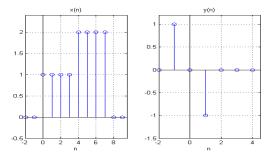


Figure: 2 séquences à convoler

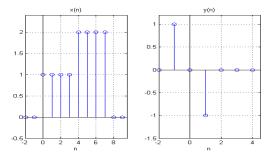


Figure: 2 séquences à convoler

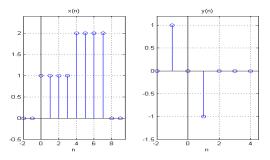


Figure: 2 séquences à convoler

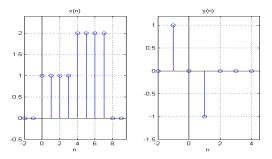


Figure: 2 séquences à convoler

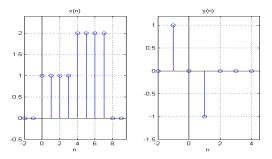


Figure: 2 séquences à convoler

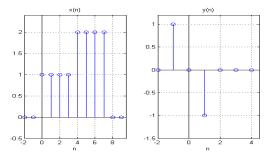


Figure: 2 séquences à convoler

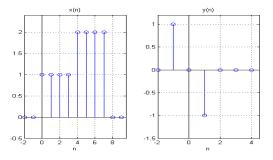


Figure: 2 séquences à convoler

• (3) Calculer en s'aidant d'un graphe la convolution dans $\mathbb Z$ des deux séquences finies x et y représentées ci-dessous. On prendra garde au fait que $y(-1) \neq 0$.

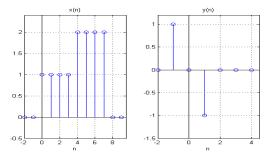


Figure: 2 séquences à convoler

voyez vous une utilité possible à l'opération {.*y}?

- (4) Soit x(n) une séquence *réelle*.
 - Montrer que sa TFtd vérifie $\hat{x}(-v) = \hat{x}^*(v)$.
 - En déduire que la représentation de $|\hat{x}(v)|$ est symétrique autour de l'axe v=0.5
 - Exprimer la TFtd \hat{y} de y(n) = x(-n) en fonction de \hat{x} .

Vous avez 3 minute(s)

- (4) Soit x(n) une séquence *réelle*.
 - Montrer que sa TFtd vérifie $\hat{x}(-v) = \hat{x}^*(v)$.
 - En déduire que la représentation de $|\hat{x}(v)|$ est symétrique autour de l'axe v=0.5
 - Exprimer la TFtd \hat{y} de y(n) = x(-n) en fonction de \hat{x} .

- (4) Soit x(n) une séquence *réelle*.
 - Montrer que sa TFtd vérifie $\hat{x}(-v) = \hat{x}^*(v)$.

 - Exprimer la TFtd \hat{y} de y(n) = x(-n) en fonction de \hat{x} .

- (4) Soit x(n) une séquence *réelle*.
 - Montrer que sa TFtd vérifie $\hat{x}(-v) = \hat{x}^*(v)$.

 - Exprimer la TFtd \hat{y} de y(n) = x(-n) en fonction de \hat{x} .

- (4) Soit x(n) une séquence *réelle*.
 - Montrer que sa TFtd vérifie $\hat{x}(-v) = \hat{x}^*(v)$.
 - En déduire que la représentation de $|\hat{x}(v)|$ est symétrique autour de l'axe v=0.5
 - Exprimer la TFtd \hat{y} de y(n) = x(-n) en fonction de \hat{x} .

- (4) Soit x(n) une séquence *réelle*.
 - Montrer que sa TFtd vérifie $\hat{x}(-v) = \hat{x}^*(v)$.
 - En déduire que la représentation de $|\hat{x}(v)|$ est symétrique autour de l'axe v=0.5
 - Exprimer la TFtd \hat{y} de y(n) = x(-n) en fonction de \hat{x} .

- (4) Soit x(n) une séquence *réelle*.
 - Montrer que sa TFtd vérifie $\hat{x}(-v) = \hat{x}^*(v)$.

 - Exprimer la TFtd \hat{y} de y(n) = x(-n) en fonction de \hat{x} .

- (4) Soit x(n) une séquence *réelle*.
 - Montrer que sa TFtd vérifie $\hat{x}(-v) = \hat{x}^*(v)$.
 - En déduire que la représentation de $|\hat{x}(v)|$ est symétrique autour de l'axe v=0.5
 - Exprimer la TFtd \hat{y} de y(n) = x(-n) en fonction de \hat{x} .

- (4) Soit x(n) une séquence *réelle*.
 - Montrer que sa TFtd vérifie $\hat{x}(-v) = \hat{x}^*(v)$.

 - Exprimer la TFtd \hat{y} de y(n) = x(-n) en fonction de \hat{x} .

- (4) Soit x(n) une séquence *réelle*.
 - Montrer que sa TFtd vérifie $\hat{x}(-v) = \hat{x}^*(v)$.

 - Exprimer la TFtd \hat{y} de y(n) = x(-n) en fonction de \hat{x} .

- (4) Soit x(n) une séquence *réelle*.
 - Montrer que sa TFtd vérifie $\hat{x}(-v) = \hat{x}^*(v)$.

 - Exprimer la TFtd \hat{y} de y(n) = x(-n) en fonction de \hat{x} .

- (4) Soit x(n) une séquence *réelle*.
 - Montrer que sa TFtd vérifie $\hat{x}(-v) = \hat{x}^*(v)$.

 - Exprimer la TFtd \hat{y} de y(n) = x(-n) en fonction de \hat{x} .

- (5) Soit x(n) et y(n) deux séquences de $l^1(\mathbb{Z})$ et $w = x \star y$. Montrer que
 - 5.1 $w \in l^1(\mathbb{Z})$
 - 5.2 $\hat{w}(v) = \hat{x}(v)\hat{y}(v)$.

Vous avez 3 minute(s)

- (5) Soit x(n) et y(n) deux séquences de $l^1(\mathbb{Z})$ et $w=x\star y$. Montrer que
 - 5.1 $w \in l^1(\mathbb{Z})$
 - 5.2 $\hat{w}(v) = \hat{x}(v)\hat{y}(v)$.

- (5) Soit x(n) et y(n) deux séquences de $l^1(\mathbb{Z})$ et $w=x\star y$. Montrer que
 - 5.1 $w \in l^1(\mathbb{Z})$
 - 5.2 $\hat{w}(v) = \hat{x}(v)\hat{y}(v)$.

- (5) Soit x(n) et y(n) deux séquences de $l^1(\mathbb{Z})$ et $w=x\star y$. Montrer que
 - 5.1 $w \in l^1(\mathbb{Z})$
 - 5.2 $\hat{w}(v) = \hat{x}(v)\hat{y}(v)$.

- (5) Soit x(n) et y(n) deux séquences de $l^1(\mathbb{Z})$ et $w=x\star y$. Montrer que
 - 5.1 $w \in l^1(\mathbb{Z})$
 - 5.2 $\hat{w}(v) = \hat{x}(v)\hat{y}(v)$.

- (5) Soit x(n) et y(n) deux séquences de $l^1(\mathbb{Z})$ et $w=x\star y$. Montrer que
 - 5.1 $w \in l^1(\mathbb{Z})$
 - 5.2 $\hat{w}(v) = \hat{x}(v)\hat{y}(v)$.

- (5) Soit x(n) et y(n) deux séquences de $l^1(\mathbb{Z})$ et $w=x\star y$. Montrer que
 - 5.1 $w \in l^1(\mathbb{Z})$
 - 5.2 $\hat{w}(v) = \hat{x}(v)\hat{y}(v)$.

- (5) Soit x(n) et y(n) deux séquences de $l^1(\mathbb{Z})$ et $w=x\star y$. Montrer que
 - 5.1 $w \in l^1(\mathbb{Z})$
 - 5.2 $\hat{w}(v) = \hat{x}(v)\hat{y}(v)$.

- (5) Soit x(n) et y(n) deux séquences de $l^1(\mathbb{Z})$ et $w=x\star y$. Montrer que
 - 5.1 $w \in l^1(\mathbb{Z})$
 - 5.2 $\hat{w}(v) = \hat{x}(v)\hat{y}(v)$.

- (5) Soit x(n) et y(n) deux séquences de $l^1(\mathbb{Z})$ et $w=x\star y$. Montrer que
 - 5.1 $w \in l^1(\mathbb{Z})$
 - 5.2 $\hat{w}(v) = \hat{x}(v)\hat{y}(v)$.

- (5) Soit x(n) et y(n) deux séquences de $l^1(\mathbb{Z})$ et $w=x\star y$. Montrer que
 - 5.1 $w \in l^1(\mathbb{Z})$
 - 5.2 $\hat{w}(v) = \hat{x}(v)\hat{y}(v)$.

- (5) Soit x(n) et y(n) deux séquences de $l^1(\mathbb{Z})$ et $w=x\star y$. Montrer que
 - 5.1 $w \in l^1(\mathbb{Z})$
 - 5.2 $\hat{w}(v) = \hat{x}(v)\hat{y}(v)$.

- (6) Soit la séquence finie x(n) définie sur l'intervalle $n=0,\ldots,3$ par $\{x(n)\}_{n=0,\ldots,3}=\{1,1,1,1\}$. On réalise la séquence d'opérations suivantes :
 - 1. calcul de $X_8(k)$, $k = 0, \dots, 7$; la TFD d'ordre M = 8 de x
 - 2. calcul de $Y_8(k) = X_8(k)e^{+i2\pi}\frac{3k}{M}$
 - 3. calcul de la TFD⁻¹ d'ordre M, $y(n) = \text{TFD}^{-1}\{Y_8(k)\}$

Vous avez 2 minute(s)

- (6) Soit la séquence finie x(n) définie sur l'intervalle $n=0,\ldots,3$ par $\{x(n)\}_{n=0,\ldots,3}=\{1,1,1,1\}$. On réalise la séquence d'opérations suivantes :
 - 1. calcul de $X_8(k)$, $k = 0, \dots, 7$; la TFD d'ordre M = 8 de x
 - 2. calcul de $Y_8(k) = X_8(k)e^{+i2\pi}\frac{3k}{M}$
 - 3. calcul de la TFD⁻¹ d'ordre M, $y(n) = \text{TFD}^{-1}\{Y_8(k)\}$

Que vaut
$$y(n) (n = 0, 1, ..., 7)$$
?

- (6) Soit la séquence finie x(n) définie sur l'intervalle $n=0,\ldots,3$ par $\{x(n)\}_{n=0,\ldots,3}=\{1,1,1,1\}$. On réalise la séquence d'opérations suivantes :
 - 1. calcul de $X_8(k)$, $k = 0, \dots, 7$; la TFD d'ordre M = 8 de x
 - 2. calcul de $Y_8(k) = X_8(k)e^{+i2\pi}\frac{3k}{M}$
 - 3. calcul de la TFD⁻¹ d'ordre M, $y(n) = \text{TFD}^{-1}\{Y_8(k)\}$

- (6) Soit la séquence finie x(n) définie sur l'intervalle $n=0,\ldots,3$ par $\{x(n)\}_{n=0,\ldots,3}=\{1,1,1,1\}$. On réalise la séquence d'opérations suivantes :
 - 1. calcul de $X_8(k)$, $k = 0, \dots, 7$; la TFD d'ordre M = 8 de x
 - 2. calcul de $Y_8(k) = X_8(k)e^{+i2\pi}\frac{3k}{M}$
 - 3. calcul de la TFD⁻¹ d'ordre M, $y(n) = \text{TFD}^{-1}\{Y_8(k)\}$

- (6) Soit la séquence finie x(n) définie sur l'intervalle $n=0,\ldots,3$ par $\{x(n)\}_{n=0,\ldots,3}=\{1,1,1,1\}$. On réalise la séquence d'opérations suivantes :
 - 1. calcul de $X_8(k)$, $k = 0, \dots, 7$; la TFD d'ordre M = 8 de x
 - 2. calcul de $Y_8(k) = X_8(k)e^{+i2\pi}\frac{3k}{M}$
 - 3. calcul de la TFD $^{-1}$ d'ordre M, $y(n) = \text{TFD}^{-1}\{Y_8(k)\}$

- (6) Soit la séquence finie x(n) définie sur l'intervalle $n=0,\ldots,3$ par $\{x(n)\}_{n=0,\ldots,3}=\{1,1,1,1\}$. On réalise la séquence d'opérations suivantes :
 - 1. calcul de $X_8(k)$, $k = 0, \dots, 7$; la TFD d'ordre M = 8 de x
 - 2. calcul de $Y_8(k) = X_8(k)e^{+i2\pi}\frac{3k}{M}$
 - 3. calcul de la TFD $^{-1}$ d'ordre M, $y(n) = \text{TFD}^{-1}\{Y_8(k)\}$

- (6) Soit la séquence finie x(n) définie sur l'intervalle $n=0,\ldots,3$ par $\{x(n)\}_{n=0,\ldots,3}=\{1,1,1,1\}$. On réalise la séquence d'opérations suivantes :
 - 1. calcul de $X_8(k)$, $k = 0, \dots, 7$; la TFD d'ordre M = 8 de x
 - 2. calcul de $Y_8(k) = X_8(k)e^{+i2\pi}\frac{3k}{M}$
 - 3. calcul de la TFD⁻¹ d'ordre M, $y(n) = \text{TFD}^{-1}\{Y_8(k)\}$

- (6) Soit la séquence finie x(n) définie sur l'intervalle $n=0,\ldots,3$ par $\{x(n)\}_{n=0,\ldots,3}=\{1,1,1,1\}$. On réalise la séquence d'opérations suivantes :
 - 1. calcul de $X_8(k)$, $k = 0, \dots, 7$; la TFD d'ordre M = 8 de x
 - 2. calcul de $Y_8(k) = X_8(k)e^{+i2\pi}\frac{3k}{M}$
 - 3. calcul de la TFD $^{-1}$ d'ordre M, $y(n) = \text{TFD}^{-1}\{Y_8(k)\}$

- (6) Soit la séquence finie x(n) définie sur l'intervalle $n=0,\ldots,3$ par $\{x(n)\}_{n=0,\ldots,3}=\{1,1,1,1\}$. On réalise la séquence d'opérations suivantes :
 - 1. calcul de $X_8(k)$, $k=0,\ldots,7$; la TFD d'ordre M=8 de x
 - 2. calcul de $Y_8(k) = X_8(k)e^{+i2\pi}\frac{3k}{M}$
 - 3. calcul de la TFD⁻¹ d'ordre M, $y(n) = \text{TFD}^{-1}\{Y_8(k)\}$

- (6) Soit la séquence finie x(n) définie sur l'intervalle $n=0,\ldots,3$ par $\{x(n)\}_{n=0,\ldots,3}=\{1,1,1,1\}$. On réalise la séquence d'opérations suivantes :
 - 1. calcul de $X_8(k)$, $k=0,\ldots,7$; la TFD d'ordre M=8 de x
 - 2. calcul de $Y_8(k) = X_8(k)e^{+i2\pi}\frac{3k}{M}$
 - 3. calcul de la TFD⁻¹ d'ordre M, $y(n) = \text{TFD}^{-1}\{Y_8(k)\}$

- (6) Soit la séquence finie x(n) définie sur l'intervalle $n=0,\ldots,3$ par $\{x(n)\}_{n=0,\ldots,3}=\{1,1,1,1\}$. On réalise la séquence d'opérations suivantes :
 - 1. calcul de $X_8(k), k = 0, \dots, 7$; la TFD d'ordre M = 8 de x
 - 2. calcul de $Y_8(k) = X_8(k)e^{+i2\pi}\frac{3k}{M}$
 - 3. calcul de la TFD $^{-1}$ d'ordre M, $y(n) = \text{TFD}^{-1}\{Y_8(k)\}$

- (6) Soit la séquence finie x(n) définie sur l'intervalle $n=0,\ldots,3$ par $\{x(n)\}_{n=0,\ldots,3}=\{1,1,1,1\}$. On réalise la séquence d'opérations suivantes :
 - 1. calcul de $X_8(k)$, $k=0,\ldots,7$; la TFD d'ordre M=8 de x
 - 2. calcul de $Y_8(k) = X_8(k)e^{+i2\pi} \frac{3k}{M}$
 - 3. calcul de la TFD $^{-1}$ d'ordre M, $y(n) = \text{TFD}^{-1}\{Y_8(k)\}$

Que vaut y(n) (n = 0, 1, ..., 7)?

- (7) Résolution. On considère la séquence de longueur finie $x(n)=e^{i2\pi v_0n}+e^{i2\pi(v_0+\varepsilon)n}$, pour $n=0,1,\ldots,N-1$. Aide : la porte de largeur N, notée $p(n)=\mathbf{1}_{\{0,1,\ldots,N-1\}}(n)$ admet pour TFtd $\hat{p}(v)=e^{-i\pi(N-1)v}\frac{\sin(\pi vN)}{\sin(\pi v)}$. On suppose que v_0 et $v_0+\varepsilon$ sont dans [0,0.5[.
 - 7.1 En déduire la TFtd de x, notée $\hat{x}(v)$, exprimée à l'aide de \hat{p}
 - 7.2 Pour quelle valeur minimale de ε observe t-on deux pics sur le graphe de $|\hat{x}(v)|$, $-\frac{1}{2} < v \le \frac{1}{2}$?
 - 7.3 On considère le doublet $x(n) = e^{i2\pi(0.1)n} + e^{i2\pi(0.11)n}$. Pour quelle durée d'observation minimale de N peut-on le résoudre (observer deux pics dans la TFtd)?

Vous avez 3 minute(s)

- (7) Résolution. On considère la séquence de longueur finie $x(n)=e^{i2\pi v_0n}+e^{i2\pi(v_0+\varepsilon)n}$, pour $n=0,1,\ldots,N-1$. Aide : la porte de largeur N, notée $p(n)=\mathbf{1}_{\{0,1,\ldots,N-1\}}(n)$ admet pour TFtd $\hat{p}(v)=e^{-i\pi(N-1)v}\frac{\sin(\pi vN)}{\sin(\pi v)}$. On suppose que v_0 et $v_0+\varepsilon$ sont dans [0,0.5[.
 - 7.1 En déduire la TFtd de x, notée $\hat{x}(v)$, exprimée à l'aide de \hat{p}
 - 7.2 Pour quelle valeur minimale de ε observe t-on deux pics sur le graphe de $|\hat{x}(v)|$, $-\frac{1}{2} < v \leq \frac{1}{2}$?
 - 7.3 On considère le doublet $x(n) = e^{i2\pi(0.1)n} + e^{i2\pi(0.11)n}$. Pour quelle durée d'observation minimale de N peut-on le résoudre (observer deux pics dans la TFtd)?

10

- (7) Résolution. On considère la séquence de longueur finie $x(n)=e^{i2\pi v_0n}+e^{i2\pi(v_0+\varepsilon)n}$, pour $n=0,1,\ldots,N-1$. Aide : la porte de largeur N, notée $p(n)=\mathbf{1}_{\{0,1,\ldots,N-1\}}(n)$ admet pour TFtd $\hat{p}(v)=e^{-i\pi(N-1)v}\frac{\sin(\pi vN)}{\sin(\pi v)}$. On suppose que v_0 et $v_0+\varepsilon$ sont dans [0,0.5[.
 - 7.1 En déduire la TFtd de x, notée $\hat{x}(v)$, exprimée à l'aide de \hat{p}
 - 7.2 Pour quelle valeur minimale de ε observe t-on deux pics sur le graphe de $|\hat{x}(v)|$, $-\frac{1}{2} < v \le \frac{1}{2}$?
 - 7.3 On considère le doublet $x(n) = e^{i2\pi(0.1)n} + e^{i2\pi(0.11)n}$. Pour quelle durée d'observation minimale de N peut-on le résoudre (observer deux pics dans la TFtd)?

- (7) Résolution. On considère la séquence de longueur finie $x(n)=e^{i2\pi v_0n}+e^{i2\pi(v_0+\varepsilon)n}$, pour $n=0,1,\ldots,N-1$. Aide : la porte de largeur N, notée $p(n)=\mathbf{1}_{\{0,1,\ldots,N-1\}}(n)$ admet pour TFtd $\hat{p}(v)=e^{-i\pi(N-1)v}\frac{\sin(\pi vN)}{\sin(\pi v)}$. On suppose que v_0 et $v_0+\varepsilon$ sont dans [0,0.5[.
 - 7.1 En déduire la TFtd de x, notée $\hat{x}(v)$, exprimée à l'aide de \hat{p}
 - 7.2 Pour quelle valeur minimale de ε observe t-on deux pics sur le graphe de $|\hat{x}(v)|$, $-\frac{1}{2} < v \le \frac{1}{2}$?
 - 7.3 On considère le doublet $x(n) = e^{i2\pi(0.1)n} + e^{i2\pi(0.11)n}$. Pour quelle durée d'observation minimale de N peut-on le résoudre (observer deux pics dans la TFtd)?

- (7) Résolution. On considère la séquence de longueur finie $x(n)=e^{i2\pi v_0n}+e^{i2\pi(v_0+\varepsilon)n}$, pour $n=0,1,\ldots,N-1$. Aide : la porte de largeur N, notée $p(n)=\mathbf{1}_{\{0,1,\ldots,N-1\}}(n)$ admet pour TFtd $\hat{p}(v)=e^{-i\pi(N-1)v}\frac{\sin(\pi vN)}{\sin(\pi v)}$. On suppose que v_0 et $v_0+\varepsilon$ sont dans [0,0.5[.
 - 7.1 En déduire la TFtd de x, notée $\hat{x}(v)$, exprimée à l'aide de \hat{p}
 - 7.2 Pour quelle valeur minimale de ε observe t-on deux pics sur le graphe de $|\hat{x}(v)|$, $-\frac{1}{2} < v \leq \frac{1}{2}$?
 - 7.3 On considère le doublet $x(n) = e^{i2\pi(0.1)n} + e^{i2\pi(0.11)n}$. Pour quelle durée d'observation minimale de N peut-on le résoudre (observer deux pics dans la TFtd)?

- (7) Résolution. On considère la séquence de longueur finie $x(n)=e^{i2\pi v_0n}+e^{i2\pi(v_0+\varepsilon)n}$, pour $n=0,1,\ldots,N-1$. Aide : la porte de largeur N, notée $p(n)=\mathbf{1}_{\{0,1,\ldots,N-1\}}(n)$ admet pour TFtd $\hat{p}(v)=e^{-i\pi(N-1)v}\frac{\sin(\pi vN)}{\sin(\pi v)}$. On suppose que v_0 et $v_0+\varepsilon$ sont dans [0,0.5[.
 - 7.1 En déduire la TFtd de x, notée $\hat{x}(v)$, exprimée à l'aide de \hat{p}
 - 7.2 Pour quelle valeur minimale de ε observe t-on deux pics sur le graphe de $|\hat{x}(v)|$, $-\frac{1}{2} < v \leq \frac{1}{2}$?
 - 7.3 On considère le doublet $x(n) = e^{i2\pi(0.1)n} + e^{i2\pi(0.11)n}$. Pour quelle durée d'observation minimale de N peut-on le résoudre (observer deux pics dans la TFtd)?

- (7) Résolution. On considère la séquence de longueur finie $x(n)=e^{i2\pi v_0n}+e^{i2\pi(v_0+\varepsilon)n}$, pour $n=0,1,\ldots,N-1$. Aide : la porte de largeur N, notée $p(n)=\mathbf{1}_{\{0,1,\ldots,N-1\}}(n)$ admet pour TFtd $\hat{p}(v)=e^{-i\pi(N-1)v}\frac{\sin(\pi vN)}{\sin(\pi v)}$. On suppose que v_0 et $v_0+\varepsilon$ sont dans [0,0.5[.
 - 7.1 En déduire la TFtd de x, notée $\hat{x}(v)$, exprimée à l'aide de \hat{p}
 - 7.2 Pour quelle valeur minimale de ε observe t-on deux pics sur le graphe de $|\hat{x}(v)|$, $-\frac{1}{2} < v \leq \frac{1}{2}$?
 - 7.3 On considère le doublet $x(n) = e^{i2\pi(0.1)n} + e^{i2\pi(0.11)n}$. Pour quelle durée d'observation minimale de N peut-on le résoudre (observer deux pics dans la TFtd)?

- (7) Résolution. On considère la séquence de longueur finie $x(n)=e^{i2\pi v_0n}+e^{i2\pi(v_0+\varepsilon)n}$, pour $n=0,1,\ldots,N-1$. Aide : la porte de largeur N, notée $p(n)=\mathbf{1}_{\{0,1,\ldots,N-1\}}(n)$ admet pour TFtd $\hat{p}(v)=e^{-i\pi(N-1)v}\frac{\sin(\pi vN)}{\sin(\pi v)}$. On suppose que v_0 et $v_0+\varepsilon$ sont dans [0,0.5[.
 - 7.1 En déduire la TFtd de x, notée $\hat{x}(v)$, exprimée à l'aide de \hat{p}
 - 7.2 Pour quelle valeur minimale de ε observe t-on deux pics sur le graphe de $|\hat{x}(v)|$, $-\frac{1}{2} < v \leq \frac{1}{2}$?
 - 7.3 On considère le doublet $x(n) = e^{i2\pi(0.1)n} + e^{i2\pi(0.11)n}$. Pour quelle durée d'observation minimale de N peut-on le résoudre (observer deux pics dans la TFtd)?

- (7) Résolution. On considère la séquence de longueur finie $x(n)=e^{i2\pi v_0n}+e^{i2\pi(v_0+\varepsilon)n}$, pour $n=0,1,\ldots,N-1$. Aide : la porte de largeur N, notée $p(n)=\mathbf{1}_{\{0,1,\ldots,N-1\}}(n)$ admet pour TFtd $\hat{p}(v)=e^{-i\pi(N-1)v}\frac{\sin(\pi vN)}{\sin(\pi v)}$. On suppose que v_0 et $v_0+\varepsilon$ sont dans [0,0.5[.
 - 7.1 En déduire la TFtd de x, notée $\hat{x}(v)$, exprimée à l'aide de \hat{p}
 - 7.2 Pour quelle valeur minimale de ε observe t-on deux pics sur le graphe de $|\hat{x}(v)|$, $-\frac{1}{2} < v \le \frac{1}{2}$?
 - 7.3 On considère le doublet $x(n) = e^{i2\pi(0.1)n} + e^{i2\pi(0.11)n}$. Pour quelle durée d'observation minimale de N peut-on le résoudre (observer deux pics dans la TFtd)?

- (7) Résolution. On considère la séquence de longueur finie $x(n)=e^{i2\pi v_0n}+e^{i2\pi(v_0+\varepsilon)n}$, pour $n=0,1,\ldots,N-1$. Aide : la porte de largeur N, notée $p(n)=\mathbf{1}_{\{0,1,\ldots,N-1\}}(n)$ admet pour TFtd $\hat{p}(v)=e^{-i\pi(N-1)v}\frac{\sin(\pi vN)}{\sin(\pi v)}$. On suppose que v_0 et $v_0+\varepsilon$ sont dans [0,0.5[.
 - 7.1 En déduire la TFtd de x, notée $\hat{x}(v)$, exprimée à l'aide de \hat{p}
 - 7.2 Pour quelle valeur minimale de ε observe t-on deux pics sur le graphe de $|\hat{x}(v)|$, $-\frac{1}{2} < v \le \frac{1}{2}$?
 - 7.3 On considère le doublet $x(n) = e^{i2\pi(0.1)n} + e^{i2\pi(0.11)n}$. Pour quelle durée d'observation minimale de N peut-on le résoudre (observer deux pics dans la TFtd)?

- (7) Résolution. On considère la séquence de longueur finie $x(n)=e^{i2\pi v_0n}+e^{i2\pi(v_0+\varepsilon)n}$, pour $n=0,1,\ldots,N-1$. Aide : la porte de largeur N, notée $p(n)=\mathbf{1}_{\{0,1,\ldots,N-1\}}(n)$ admet pour TFtd $\hat{p}(v)=e^{-i\pi(N-1)v}\frac{\sin(\pi vN)}{\sin(\pi v)}$. On suppose que v_0 et $v_0+\varepsilon$ sont dans [0,0.5[.
 - 7.1 En déduire la TFtd de x, notée $\hat{x}(v)$, exprimée à l'aide de \hat{p}
 - 7.2 Pour quelle valeur minimale de ε observe t-on deux pics sur le graphe de $|\hat{x}(v)|$, $-\frac{1}{2} < v \leq \frac{1}{2}$?
 - 7.3 On considère le doublet $x(n) = e^{i2\pi(0.1)n} + e^{i2\pi(0.11)n}$. Pour quelle durée d'observation minimale de N peut-on le résoudre (observer deux pics dans la TFtd)?

- (7) Résolution. On considère la séquence de longueur finie $x(n)=e^{i2\pi v_0n}+e^{i2\pi(v_0+\varepsilon)n}$, pour $n=0,1,\ldots,N-1$. Aide : la porte de largeur N, notée $p(n)=\mathbf{1}_{\{0,1,\ldots,N-1\}}(n)$ admet pour TFtd $\hat{p}(v)=e^{-i\pi(N-1)v}\frac{\sin(\pi vN)}{\sin(\pi v)}$. On suppose que v_0 et $v_0+\varepsilon$ sont dans [0,0.5[.
 - 7.1 En déduire la TFtd de x, notée $\hat{x}(v)$, exprimée à l'aide de \hat{p}
 - 7.2 Pour quelle valeur minimale de ε observe t-on deux pics sur le graphe de $|\hat{x}(v)|$, $-\frac{1}{2} < v \leq \frac{1}{2}$?
 - 7.3 On considère le doublet $x(n) = e^{i2\pi(0.1)n} + e^{i2\pi(0.11)n}$. Pour quelle durée d'observation minimale de N peut-on le résoudre (observer deux pics dans la TFtd)?

$$y(n) = \frac{y(n-1)}{3} + \frac{x(n) + x(n+1)}{2}$$
.

- En supposant que $\hat{y}(v)$ et $\hat{x}(v)$ sont bien définies, calculer $\hat{y}(v)$ sous la forme $\hat{y}(v) = \hat{x}(v)T(e^{i2\pi v})$ où on précisera la fonction T
- Exprimer $|\hat{y}|_{\mathrm{dB}} = 20\log_{10}(|\hat{y}|)$ en fonction de $|\hat{x}|_{\mathrm{dB}}$ et $|T|_{\mathrm{dB}}$

Vous avez 2 minute(s)

$$y(n) = \frac{y(n-1)}{3} + \frac{x(n) + x(n+1)}{2}$$
.

- En supposant que $\hat{y}(v)$ et $\hat{x}(v)$ sont bien définies, calculer $\hat{y}(v)$ sous la forme $\hat{y}(v) = \hat{x}(v)T(e^{i2\pi v})$ où on précisera la fonction T
- Exprimer $|\hat{y}|_{\mathrm{dB}} = 20\log_{10}(|\hat{y}|)$ en fonction de $|\hat{x}|_{\mathrm{dB}}$ et $|T|_{\mathrm{dB}}$

10

$$y(n) = \frac{y(n-1)}{3} + \frac{x(n) + x(n+1)}{2}$$
.

- En supposant que $\hat{y}(v)$ et $\hat{x}(v)$ sont bien définies, calculer $\hat{y}(v)$ sous la forme $\hat{y}(v) = \hat{x}(v)T(e^{i2\pi v})$ où on précisera la fonction T
- Exprimer $|\hat{y}|_{\mathrm{dB}} = 20\log_{10}(|\hat{y}|)$ en fonction de $|\hat{x}|_{\mathrm{dB}}$ et $|T|_{\mathrm{dB}}$

• (8) On calcule par récurrence la séquence y(n-1) = y(n) + y(n+1)

$$y(n) = \frac{y(n-1)}{3} + \frac{x(n) + x(n+1)}{2}$$
.

- En supposant que $\hat{y}(v)$ et $\hat{x}(v)$ sont bien définies, calculer $\hat{y}(v)$ sous la forme $\hat{y}(v) = \hat{x}(v)T(e^{i2\pi v})$ où on précisera la fonction T
- Exprimer $|\hat{y}|_{\mathrm{dB}} = 20\log_{10}(|\hat{y}|)$ en fonction de $|\hat{x}|_{\mathrm{dB}}$ et $|T|_{\mathrm{dB}}$

• (8) On calcule par récurrence la séquence y(n-1) = y(n) + y(n+1)

$$y(n) = \frac{y(n-1)}{3} + \frac{x(n) + x(n+1)}{2}$$
.

- En supposant que $\hat{y}(v)$ et $\hat{x}(v)$ sont bien définies, calculer $\hat{y}(v)$ sous la forme $\hat{y}(v) = \hat{x}(v)T(e^{i2\pi v})$ où on précisera la fonction T
- Exprimer $|\hat{y}|_{\mathrm{dB}} = 20\log_{10}(|\hat{y}|)$ en fonction de $|\hat{x}|_{\mathrm{dB}}$ et $|T|_{\mathrm{dB}}$

$$y(n) = \frac{y(n-1)}{3} + \frac{x(n) + x(n+1)}{2}$$
.

- En supposant que $\hat{y}(v)$ et $\hat{x}(v)$ sont bien définies, calculer $\hat{y}(v)$ sous la forme $\hat{y}(v) = \hat{x}(v)T(e^{i2\pi v})$ où on précisera la fonction T
- Exprimer $|\hat{y}|_{\mathrm{dB}} = 20\log_{10}(|\hat{y}|)$ en fonction de $|\hat{x}|_{\mathrm{dB}}$ et $|T|_{\mathrm{dB}}$

$$y(n) = \frac{y(n-1)}{3} + \frac{x(n) + x(n+1)}{2}$$
.

- En supposant que $\hat{y}(v)$ et $\hat{x}(v)$ sont bien définies, calculer $\hat{y}(v)$ sous la forme $\hat{y}(v) = \hat{x}(v)T(e^{i2\pi v})$ où on précisera la fonction T
- Exprimer $|\hat{y}|_{\mathrm{dB}} = 20\log_{10}(|\hat{y}|)$ en fonction de $|\hat{x}|_{\mathrm{dB}}$ et $|T|_{\mathrm{dB}}$

$$y(n) = \frac{y(n-1)}{3} + \frac{x(n) + x(n+1)}{2}$$
.

- En supposant que $\hat{y}(v)$ et $\hat{x}(v)$ sont bien définies, calculer $\hat{y}(v)$ sous la forme $\hat{y}(v) = \hat{x}(v)T(e^{i2\pi v})$ où on précisera la fonction T
- Exprimer $|\hat{y}|_{\mathrm{dB}} = 20\log_{10}(|\hat{y}|)$ en fonction de $|\hat{x}|_{\mathrm{dB}}$ et $|T|_{\mathrm{dB}}$

$$y(n) = \frac{y(n-1)}{3} + \frac{x(n) + x(n+1)}{2}$$
.

- En supposant que $\hat{y}(v)$ et $\hat{x}(v)$ sont bien définies, calculer $\hat{y}(v)$ sous la forme $\hat{y}(v) = \hat{x}(v)T(e^{i2\pi v})$ où on précisera la fonction T
- Exprimer $|\hat{y}|_{\mathrm{dB}} = 20\log_{10}(|\hat{y}|)$ en fonction de $|\hat{x}|_{\mathrm{dB}}$ et $|T|_{\mathrm{dB}}$

$$y(n) = \frac{y(n-1)}{3} + \frac{x(n) + x(n+1)}{2}$$
.

- En supposant que $\hat{y}(v)$ et $\hat{x}(v)$ sont bien définies, calculer $\hat{y}(v)$ sous la forme $\hat{y}(v) = \hat{x}(v)T(e^{i2\pi v})$ où on précisera la fonction T
- Exprimer $|\hat{y}|_{\mathrm{dB}} = 20\log_{10}(|\hat{y}|)$ en fonction de $|\hat{x}|_{\mathrm{dB}}$ et $|T|_{\mathrm{dB}}$

$$y(n) = \frac{y(n-1)}{3} + \frac{x(n) + x(n+1)}{2}$$
.

- En supposant que $\hat{y}(v)$ et $\hat{x}(v)$ sont bien définies, calculer $\hat{y}(v)$ sous la forme $\hat{y}(v) = \hat{x}(v)T(e^{i2\pi v})$ où on précisera la fonction T
- Exprimer $|\hat{y}|_{\mathrm{dB}} = 20\log_{10}(|\hat{y}|)$ en fonction de $|\hat{x}|_{\mathrm{dB}}$ et $|T|_{\mathrm{dB}}$

$$y(n) = \frac{y(n-1)}{3} + \frac{x(n) + x(n+1)}{2}$$
.

- En supposant que $\hat{y}(v)$ et $\hat{x}(v)$ sont bien définies, calculer $\hat{y}(v)$ sous la forme $\hat{y}(v) = \hat{x}(v)T(e^{i2\pi v})$ où on précisera la fonction T
- Exprimer $|\hat{y}|_{dB} = 20 \log_{10}(|\hat{y}|)$ en fonction de $|\hat{x}|_{dB}$ et $|T|_{dB}$

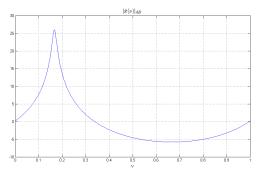


Figure: TFtd de x(n)

- Tracer $|\hat{x}(v)|$ pour $v \in [-2, 2]$
- Montrer que $x(n) \notin \mathbb{R}$ (il existe au moins une valeur de n telle que $\mathrm{Im} x(n) \neq 0$)

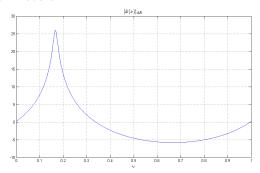


Figure: TFtd de x(n)

- Tracer $|\hat{x}(v)|$ pour $v \in [-2, 2]$
- Montrer que $x(n) \notin \mathbb{R}$ (il existe au moins une valeur de n telle que $\mathrm{Im} x(n) \neq 0$)

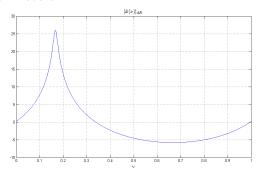


Figure: TFtd de x(n)

- Tracer $|\hat{x}(v)|$ pour $v \in [-2, 2]$
- Montrer que $x(n) \notin \mathbb{R}$ (il existe au moins une valeur de n telle que $\mathrm{Im} x(n) \neq 0$)

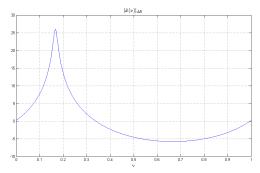


Figure: TFtd de x(n)

- Tracer $|\hat{x}(v)|$ pour $v \in [-2, 2]$
- Montrer que $x(n) \notin \mathbb{R}$ (il existe au moins une valeur de n telle que ${\rm Im}\,x(n) \neq 0)$

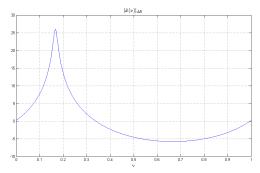


Figure: TFtd de x(n)

- Tracer $|\hat{x}(v)|$ pour $v \in [-2, 2]$
- Montrer que $x(n) \notin \mathbb{R}$ (il existe au moins une valeur de n telle que $\mathrm{Im} x(n) \neq 0$)

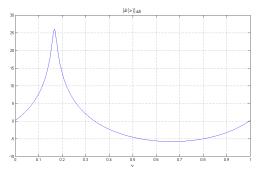


Figure: TFtd de x(n)

- Tracer $|\hat{x}(v)|$ pour $v \in [-2, 2]$
- Montrer que $x(n) \notin \mathbb{R}$ (il existe au moins une valeur de n telle que $\mathrm{Im} x(n) \neq 0$)

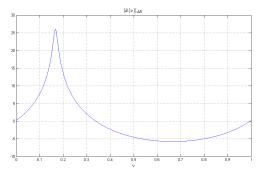


Figure: TFtd de x(n)

- Tracer $|\hat{x}(v)|$ pour $v \in [-2, 2]$
- Montrer que $x(n) \notin \mathbb{R}$ (il existe au moins une valeur de n telle que $\mathrm{Im} x(n) \neq 0$)

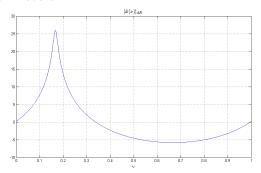


Figure: TFtd de x(n)

- Tracer $|\hat{x}(v)|$ pour $v \in [-2, 2]$
- Montrer que $x(n) \notin \mathbb{R}$ (il existe au moins une valeur de n telle que $\mathrm{Im} x(n) \neq 0$)

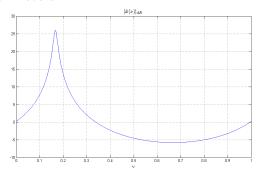


Figure: TFtd de x(n)

- Tracer $|\hat{x}(v)|$ pour $v \in [-2, 2]$
- Montrer que $x(n) \notin \mathbb{R}$ (il existe au moins une valeur de n telle que $\mathrm{Im} x(n) \neq 0$)

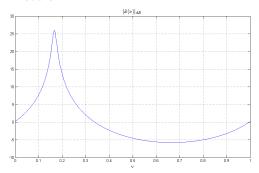


Figure: TFtd de x(n)

- Tracer $|\hat{x}(v)|$ pour $v \in [-2, 2]$
- Montrer que $x(n) \notin \mathbb{R}$ (il existe au moins une valeur de n telle que $\mathrm{Im} x(n) \neq 0$)

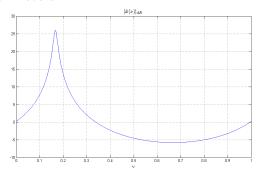


Figure: TFtd de x(n)

- Tracer $|\hat{x}(v)|$ pour $v \in [-2, 2]$
- Montrer que $x(n) \notin \mathbb{R}$ (il existe au moins une valeur de n telle que $\mathrm{Im} x(n) \neq 0$)

• (9) Soit une séquence x(n). On considère sa TFtd $\hat{x}(v)$ représentée ci-dessous en module

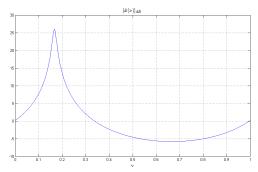


Figure: TFtd de x(n)

- Tracer $|\hat{x}(v)|$ pour $v \in [-2, 2]$
- Montrer que $x(n) \notin \mathbb{R}$ (il existe au moins une valeur de n telle que $\mathrm{Im} x(n) \neq 0$)

Vous avez 2 minute(s)